Cosmological parameter estimation from large-scale structure deep learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cosmological parameter estimation with large scale structure and supernovae data

Most cosmological parameter estimations are based on the same set of observations and are therefore not independent. Here, we test the consistency of parameter estimations using a combination of large-scale structure and supernovae data, without cosmic microwave background (CMB) data. We combine observations from the IRAS 1.2 Jy and Las Campanas redshift surveys, galaxy peculiar velocities and ...

متن کامل

From the Cosmological Microwave Background to Large-Scale Structure

The shape of the primordial fluctuation spectrum is probed by cosmic microwave background fluctuations which measure density fluctuations at z ∼ 1000 on scales of hundreds of Mpc and from galaxy redshift surveys, which measure structure at low redshift out to several hundred Mpc. The currently acceptable library of cosmological models is inadequate to account for the current data, and more exot...

متن کامل

Deep Optical Flow Estimation Via Multi-Scale Correspondence Structure Learning

As an important and challenging problem in computer vision, learning based optical flow estimation aims to discover the intrinsic correspondence structure between two adjacent video frames through statistical learning. Therefore, a key issue to solve in this area is how to effectively model the multi-scale correspondence structure properties in an adaptive end-to-end learning fashion. Motivated...

متن کامل

On architectural choices in deep learning: From network structure to gradient convergence and parameter estimation

We study mechanisms to characterize how the asymptotic convergence of backpropagation in deep architectures, in general, is related to the network structure, and how it may be influenced by other design choices including activation type, denoising and dropout rate. We seek to analyze whether network architecture and input data statistics may guide the choices of learning parameters and vice ver...

متن کامل

Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms

Motivation Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing structures of macromolecular complexes and their spatial organizations inside single cells. However, high degree of structural complexity together with practical imaging limitations makes the systematic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Physics, Mechanics & Astronomy

سال: 2020

ISSN: 1674-7348,1869-1927

DOI: 10.1007/s11433-020-1586-3